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1: Items Completed During this Quarterly Period: 

 

Item  Task  Activity/Deliverable Title 

 

Federal 

Cost 

Cost 

Share 

#7 #1, 2 Report with current results based on Task1 and 

2: 

Establishing a database and Experiments and 

analysis to bridge the gap in uncertainty 

quantification.   

3rd Quarterly Report 4,000.00 0.00 

The title of the table is based on the file Technical and Deliverable Payable Milestone 

 

2: Items Not-Completed During this Quarterly Period: 
Task number 2, laboratory set up and extract basic corrosion model parameters started during 

the previous quarter report. Part of Task 2 will be cover in the following partial report. The 

following activities will be ready in the following quarter report based on the Technical and 

Deliverable Payable Milestone 

 

Item 

# 

Task # Activity/Deliverable Title Federal 

Cost 

Cost 

Share 

4 1 
Mapping available data via GIS tools and 

geographically co-register all datasets. 

Establishing a 

database 

 

20,000.00 
 

10,000.00 

6 2 
Laboratory set up and electrochemistry 

mechanisms and corrosion assessment 

Experiments and 

analyses to bridge 

gaps in prior 

knowledge 

55,000.00 0.00 

8 2 

Extract basic corrosion model  and embed into 

the previously developed stochastic corrosion 

rate model framework 

Experiments and 

analyses to bridge 

gaps in prior 

knowledge 

24,000.00 0.00 

 

 

 

mailto:hcastaneda@tamu.edu
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3: Project Financial Tracking during this Quarterly Period: 
 

The table has been updated based on the deliverables and corrected attachment No5 Technical 

and Deliverable Payable Milestone. 

 
 

4:  Project Technical Status – 

The following tasks are included in the project: 

 Task 1: Establishing a database 

 Task 2: Experiments and analyses to bridge gaps in prior knowledge 

 Task 3: Bayesian machine learning to bridge gaps in uncertainty quantification. 

 Task 4 Finalize and evaluate/validate the model. 

 

During the third quarter, the team members from Texas A&M University (TAMU) and the 

University of Dayton (UD) had different meetings and an informal workshop conducted to 

deepen the understanding of laboratory results and how we are linking the data with filed 

measurements. In addition, the sponsor team gave a feedback of the analysis and 

experimental procedure for this project. 

 

The team organized an internal Workshop entitled “Indirect tools outcome as a parameter 

for severity and how we link the parameters with laboratory results” 

The outcomes of the workshop will help the PhD students in both TAMU and UD teams 

with different knowledge backgrounds to understand the corrosion mechanism and which 

parameters are used as primary precursors in the field following the understanding in the 

well control environment of the laboratory. 

 

During the internal team meeting, we discussed different actions to cover task 1 and task 

2.   
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Some of the results and highlights are summarized in this report as follows: 

 

Tasks 1 and 3 – Establishing a database and Bayesian machine learning to bridge the 

gaps in uncertainty quantification.  
 

Large scale environmental Database: In order to incorporate more features for the 

Bayesian Machine learning, a broader database with environmental data was established 

for better characterizing large-scale soil environment. With a number of open source data 

available, many databases were explored and data was analyzed using Python, QGIS and 

Google Earth Engine. Raster files of vegetation cover, precipitation and topology for the 

region of interest were processed. 

 

Vegetation Cover: Normalized Differential Vegetation Index (NDVI) gives information 

corresponding to vegetation cover and reflecting the relevant level of organic content in 

the soil. NDVI is calculated as the difference between near-infrared (reflected strongly by 

vegetation) and red (absorbed by vegetation). In this project LANDSAT 8 data was used, 

and in LANDSAT 8 dataset, band 5 is near-infrared(0.85- 088μm) and band 4 is red (0.64 

-0.67μm). Hence NDVI can be calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷
=

(𝐵𝐴𝑁𝐷 5 − 𝐵𝐴𝑁𝐷 4)

(𝐵𝐴𝑁𝐷 5 + 𝐵𝐴𝑁𝐷 4) 
 

In order to understand seasonal effects to the corrosion severity, NDVI was 

processed seasonally (winter,spring,summer and fall). 

 

Resolution:30m 

 

Processing Tools: Google Earth Engine (GEE) and QGIS 

GEE combines multiple catalog of satellite imagery and geospatial datasets which can be 

accessed and manipulated on the cloud computing platform. The required dataset can be 

searched and imported to the users customized programming script. For this project 

LANDSAT 8 data was imported. Once imported, the dataset can be further filtered and 

processed to obtain the NDVI raster map. The seasonal NDVI raster maps are shown below 

in Figure 1. 

 

 
   (a)      (b) 
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   (c)      (d) 

Figure 1: (a) Winter (b) Spring (c) Summer (d) Fall NDVI overplotted with 110km 

pipeline RoW 

 

Precipitation: Precipitation describes the amount of water input in a given area and hence 

one of the environmental factors which can contribute to pipeline external corrosion. In 

this report, Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) 

was used to create rainfall time series in the given region of interest. CHIRPS incorporates 

satellite imagery and in-situ station data to create gridded rainfall time series. 

 

Resolution:0:05 arc degrees. 

 

Processing Tools: Google Earth Engine (GEE) 

CHIRPS raster database has only a single precipitation band with units mm/pentad (pentad 

means 5 day period). Since in our project we are interested in the years 2005 to 2010. The 

data is filtered and processed for these years. Figure 2 shows the mean yearly precipitation 

for 5 years and Figure 3 shows the mean yearly precipitation for 2009. From the plots we 

see that the region gets maximum precipitation in the months of September and November 

and clear periodical trend can be noticed. The external corrosion processes can be affected 

by this seasonal fluctuation of precipitation in terms of water level condition (i.e., 

submerged, semi-submerged, or above water) and combined with elevation effect. Figure 

4 shows the mean precipitation distribution within the area of interest overlayed with 110 

km pipeline RoW. As expected we see more precipitation nearer to the coast and decreases 

as we move towards the mountain. 
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Figure 2: Five year mean precipitation. 

 

Figure 3: Yearly mean precipitation 

 

Figure 4: Mean yearly precipitation in the region of interest. 
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1. Soil physical properties 

To study the effects of soil physical properties on corrosion of underground 

pipeline, different soil properties like bulk density of the fine earth fraction, 

proportion of clay particles (< 0.002 mm) in the fine earth fraction, volumetric 

fraction of coarse fragments,  proportion of sand particles (> 0.05 mm) in the fine 

earth fraction and proportion of silt particles (≥ 0.002 mm and ≤ 0.05 mm) in the 

fine earth fraction were studied. 

Bulk density: It is an indicator of soil compaction.  It is calculated as the dry weight 

of soil divided by its volume. This volume includes the volume of soil particles and 

the volume of pores among soil particles.  

Coarse Fragment: Particles that are more than 2 millimeters in diameter are not 

included in chemical, mineralogical, and some physical analyses, and they are 

called coarse fragments.  

Clay: Clays are made up of secondary clay minerals and oxides/oxyhydroxides of 

iron and aluminum, and are less than 2 microns in diameter. 

Sand: Comprise quartz and resistant primary minerals such as mica. Sand particles 

are between 2 mm and 20 microns in size.  

Silts: These are typically composed of quartz and small mineral particles such as 

feldspars and mica, and are between 2 and 20 microns in diameter. 

Data Source: SoilGrids- https://soilgrids.org/ . SoilGrids is a system for global 

digital soil mapping that makes use of global soil profile information and covariate 

data to model the spatial distribution of soil properties across the globe. SoilGrids 

maps are a global soil data product generated at ISRIC — World Soil Information 

as a result of international collaboration. Data at 5 depths are available. Figures 5-

9 shows each of these property data at 60cm depth overlayered with pipeline right 

of way.  

Resolution: 250 m.  

Mapped Units: 

Name Mapped Units 

Bulk Density cg/m3 

Coarse Fragment cm3/dm3 (vol‰) 

Clay Content g/kg 

Sand Content  g/kg 

Silt Content g/kg 

 

https://soilgrids.org/
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Processing Tools: QGIS 3.1 

 
Figure 5: Soil Bulk Density 

 
Figure 6: Soil Clay Content 



Date of Report: 3rd Quarterly Report – Prepared by Homero Castaneda, TEES 

 Hui Wang, U. Dayton 
 Page 8 
   

 
Figure 7: Soil Coarse Fragment 

 

 
Figure 8: Soil Sand Content 

 
Figure 9: Soil Silt Content 
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Task 2: Experiments and analyses to bridge gaps in prior knowledge 

 

During this quarter, we started to identify critical gaps in prior knowledge (i.e., current 

indirect survey, environmental conditions and other databases) and coded (or related) to 

deterministic and probabilistic modeling by following the corrosion mechanism. The 

correlation between primary and critical parameters for corrosion precursors has been 

considered by theoretical approach and find the possible gaps in experimental conditions. 

 

Experiments set up. Gaps in prior knowledge relating coating conditions and corrosion 

severity under controlled environmental factors will be addressed through laboratory 

experiments.  

The first set of laboratory experiments primarily consider the effects of soil resistivity 

and the metallic surface condition in the presence of holidays (specifically active and 

passive state) under cathodic protection. The experimental design is presented in Table1. 

Buffer solution (with defined conductivity, pH and TDS Standards) is applied to adjust 

solution resistivity. The passive holiday can be realized by external anodic current via 

potentiostat (Gamry, The Interface 600plus™). NS4 solution with composition (unit: g/L) 

of KCl: 0.122, NaHCO3: 0.483, CaCl2: 0.093 and MgSO4: 0.131 is used to simulate soil 

conditions. Figure 10 shows the carbon steel polarized in a sodium carbonate-bicarbonate 

buffer solution with a pH of 10 at a scan rate of 0.167 mV/s. Figure 10b, shows constant 

potential of 0.3 V/SCE was applied on the metal surface for 3 hours to ensure the 

sufficient low and stable current density.  A final current density of around 150 nA/cm2 

was observed. 

 
Fig.10 (a) Potentiodynamic polarization curves and (b) current density response to 

potentiostatic polarization of carbon steel for 3 hours in a carbonate-bicarbonate buffer 

solution with a pH of 10 

 

Sequence of Non-destructive methods for Close interval survey simulation; the methods 

include: the evolution of open circuit potential (OCP), Electrochemical impedance 

spectroscopy (EIS), linear polarization resistance (LPR), and surface analysis will be 

carried out in sequence to measure the response of experimental set-ups for the analysis of 

CIS database. Also the parameters that will simulate the DCVG database will be included 
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in the sequence of techniques and outcomes. For the electrochemical measurement system, 

the three-electrode method will be used. The frequency range of EIS starts from 100 kHz 

to 10 mHz with an amplitude of 10 mV. A small voltage variation (±20 mV) based on its 

corrosion potential is applied during LPR tests. Microscopic or direct observation will be 

used to characterize the corrosion severity of holidays. All measurements will include 

duplicates to ensure reproducibility.  

Table 1 Experimental design matrix for CIS and DCVG analysis 

Samples Coatings 

Thickness 

Soil 

Composition 

Distribution of soil 

(resistivity) 

Severity based on 

active-passive 

concept 

pH 

AISI 1008/API X52 10-20 mils NS4 Conductivity 1 Active Holiday 4 
AISI 1008/API X52 10-20 mils NS4 Conductivity 1 Active Holiday 7 
AISI 1008/API X52 10-20 mils NS4 Conductivity 1 Active Holiday 9 
AISI 1008/API X52 10-20 mils NS4 Conductivity 1 Passive Holiday 4 
AISI 1008/API X52 10-20 mils NS4 Conductivity 1 Passive Holiday 7 
AISI 1008/API X52 10-20 mils NS4 Conductivity 1 Passive Holiday 9 
AISI 1008/API X52 10-20 mils NS4 Conductivity 2 Active Holiday 4 
AISI 1008/API X52 10-20 mils NS4 Conductivity 2 Active Holiday 7 
AISI 1008/API X52 10-20 mils NS4 Conductivity 2 Active Holiday 9 
AISI 1008/API X52 10-20 mils NS4 Conductivity 2 Passive Holiday 4 
AISI 1008/API X52 10-20 mils NS4 Conductivity 2 Passive Holiday 7 
AISI 1008/API X52 10-20 mils NS4 Conductivity 2 Passive Holiday 9 

 

Table 2 Technique to be used and parameter to quantify for CIS functional expressions 

Experimental 

technique 

Outcome parameters Correlation to the field 

interpretation  

OCP and Ecorr  Potential at No IR 

Current decay profile vs. time 

Pipe to soil-potential 

EIS Surface mechanisms, corrosion rate 

Passive state or active state magntiudes 

Severity and criterion 

Ranking for correlations 

LPR Corrosion rate 

MPY 

Severity and ranking for 

correlations 

Table 3 Experimental design matrix for DCVG analysis 

If concentration of ions are considered, we will include more tests on concentration of 

HCO3, Cl and SO4 at fixed conductivity and pH  

Sample Soil 

Composition 

Severity based 

on active-

passive concept 

HCO3 Cl- SO4 

API X52 NS4 Active Holiday #1   

API X52 NS4 Passive Holiday  #2   

API X52 NS4 Active Holiday  #1  
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API X52 NS4 Passive Holiday  #2  

API X52 NS4 Active Holiday   #1 

API X52 NS4 Passive Holiday   #2 

 

Table 4 Technique to be used and parameter to quantify for DCVG and assist in the 

generation of functional expressions 

Experimental technique Outcome parameters Correlation to the field 

interpretation  

Resistivity of the soil Soil conditions 

Resistivity per element to isolate 

the meaningful resistance 

Resistivity vs. IR 

OCP and EIS Surface mechanisms, corrosion 

rate 

Current decay and IR due to 

severity 

Severity and criterion 

Ranking for correlations 

Potential gradients by using 

DCVG technique approach 

Corrosion rate 

MPY 

Potential gradient vs severity 

 

Field data analysis 

 

Upon completion of compiling the data to create the master files for the 110 km pipeline 

and 60 km pipeline data, certain discrepancies were found when attempting to map the 

data. Issues regarding soil moisture and water distribution information are being resolved. 

For ease in designing the simulation strategy and setting up experiments, the closed-

interval survey (CIS) data has been considered against other environment-related factors 

such as pH and ionic concentrations of species to generate probability density functions 

(PDFs).These were plotted with the use of the open-circuit potential (off potential) 

measured via CIS and other soil parameters that are likely to affect this magnitude. These 

will be used further to determine functional expressions and how will be characterized in 

the laboratory.  

Mechanistic analysis of the soil and corrosive environment in the field included 

thermodynamic fundamentals by means of Nernst Equation and semi-empirical relations 

based on corrosion potential, open circuit potential and/or Off potential concepts with the 

soil parameters will be performed after having the full set of results from the laboratory 

experiments. 

To perform the Bayesian machine learning analysis, the geo-referenced database is 

converted to an object based database such that each pipeline segment (with a predefined 

length, say 0.06 miles) with associated features (i.e., measured soil environment, direct and 

indirect inspections). Various data collected as soil chemical and physical properties, direct 

inspection data and indirect inspection data are converted into object based data-frames 

indexed by the pipeline segment ID. Hence in the global data-frame, each pipeline segment 

will have the data structure shown in Figure 11. 
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Figure 11: Data structure for Bayesian machine learning 

 

Now the feature space comprises of all the features associated to each segment. Referring 

to the proposed work flow, all the features can be categorized into two groups: 1) Indicative 

features and 2) target features. The indicative features include all the indirect information 

from the environment of the pipeline. These are the chemical and physical properties of the 

soil environment as well as indirect inspection results. In this report and also according to 

the proposed work, the soil chemical and physical properties are used for clustering the 

pipeline segments into different groups in order to detect possible heterogeneity of the soil 

corrosion environment along the pipeline right-of-way. Pipeline segments are categorized 

into multiple groups such that items in the same cluster will have similar soil environment 

and hence are assumed to be exposed to the similar corrosivity level. The inter cluster 

difference is assumed to be a part of the driving force that leads to different corrosion 

severities. 

Task 3: Bayesian machine learning to bridge the gaps in uncertainty quantification 

The entire machine-learning framework comprises of three layers: 

 Unsupervised clustering on regional environment and soil information for corrosivity 

similarity analysis. 

 Supervised classification for identifying corrosion defects and severities. 

 Regression and projection for spatial and temporal characterization of active corrosion 

process. 

The first layer of unsupervised clustering is performed by using Hidden Markov Random 

Field (HMRF) model. This model can extract similarity of corrosion environment among 

multiple pipeline segments in both physical and feature space. In order to use HMRF 

model, we need to select relevant features (i.e., measured corrosion environment data) 



Date of Report: 3rd Quarterly Report – Prepared by Homero Castaneda, TEES 

 Hui Wang, U. Dayton 
 Page 13 
   

which contributes to the inter cluster separability and identify the ideal number of clusters 

to be made. 

 

Feature Selection 

Clustering analysis is the process of grouping data points based on some similarity in 

properties or features. For supervised learning feature selection algorithms, this can be 

achieved by maximizing some target function of predictive accuracy, because we are given 

class labels and we want to keep only the features that are related to or lead to good 

prediction performance. But in unsupervised learning we are not given class labels. In such 

case we will have to perform feature selection because: 

 Finding the ones that contribute to the prediction since some features may be 

redundant, some may be irrelevant, and some can misguide clustering results. 

 Curse of dimensionality: If there are N features we need at least 2N data points 

[1,2]. 

Therefor choosing a subset of features leads to better performance.  

Feature selection are of three types: 

1. Filter Model: Evaluates the relevance of a feature by studying its characteristics 

using certain statistical criteria. 

2. Wrapper Model: Utilizes quality of clustering as a selection criteria. 

a. Computationally expensive and biased on method used. 

b. Better accuracy 

3. Hybrid Model: Bridges gap between filter and wrapper models. Uses statistical 

criteria to select candidate features and then chooses the subset with the highest 

classification accuracy. 

In this project we have three main categories of features: 
1. Physical soil properties like bulk density of soil, percentage sand content, clay 

content, coarse fragment and silt content. 

2. Large scale environmental features like elevation, yearly mean precipitation and 

NDVI, 

3. Soil electrochemical properties from site samples like pH, ion concentration, half-

cell potential and resistivity. 
 

Among these features soil electrochemical features are onsite data and are the most 

wisely studied features and they are directly related to corrosivity. Hence the aim is to 

select relevant features from the other two subsets that will add to the predictive analysis. 

For this project feature selection we first start with finding the correlation across different 

features, correlation between the potential features and the maximum depth of corrosion 

defects within each pipeline segment and the number of corrosion defects found in each 

pipeline segment. Further we check the heterogeneity of the features by performing 

Kernel density fitting on each feature. Then, we apply and compare other unsupervised 

feature selection methods to determine the most important features. 
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Correlation Analysis 

Features with high correlation are more linearly dependent and hence have almost the 

same effect on the dependent variable. So, when two features have high correlation, we 

can drop one of the two features. Figure 12 gives the correlation matrix of each feature 

with each other, Figure 13 shows the sum of correlation values of each feature, Figure 14 

and 15  shows the correlation of each of the features with maximum corrosion depth and 

maximum number of corrosion defects in a 100 m segment. 

 As seen in Figure 12 Bulk density of the soil has good correlation between pH and 

Elevation which means information of bulk density is contained in these features and 

hence can be removed. Among pH and Elevation also has a correlation of 0.68. Elevation 

also has the maximum total correlation value as shown in Figure 13. Hence among these 

three features pH can be selected as its has been shown in number of literature that pH 

variation is a major indicator of corrosivity. Similarly, clay content also has correlation 

with sand and silt content and among these two according to figure 13 sand content has 

higher correlation value. Therefore, in physical soil properties silt content can give more 

information for the clustering analysis.  

In the case of large-scale environmental features elevation has the highest correlation 

with all features and can be eliminated. Among electrochemical properties all features 

have correlation below 0.5. 

 

Result: Physical Soil Properties: Silt content 

       Large Scale Environmental: Yearly Mean Precipitation and Avg NDVI 

      Electrochemical Properties: Eh, Resistivity, pH, CO3, HCO3, Cl, SO4 

 
Figure 12: Feature Correlation Matrix 
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Figure 13: Order of correlation sum 

 
Figure 14: Correlation with maximum corrosion depth 
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Figure 15: Correlation with number of corrosive spots. 

Probability Density Analysis 

 

Probability density function(PDF) provides a relative likelihood of the observed feature 

in the sample space. The methods for estimating probability density functions can be 

categorized into parametric and nonparametric approaches. The parametric methods 

assume a functional form for the density, such as Gaussian and hence only the 

distribution parameters need to be estimated. Non -parametric methods do not assume 

any knowledge about the density of the data in priori and computes the density directly 

from the instances and because of this reason they are in more of interest. Non-parametric 

density estimation is given as: 

𝑝(𝑥) ≅  
𝑘

𝑁∗𝑉
             

 (1)  

where p(x) is the estimated probability density distribution function for feature x, V 

volume surrounding x, N is the total number of instances and k is the number of instances 

inside V. There are two approaches for non-parametric density estimation, one fixing 

value of k and find corresponding volume V   called k Nearest Neighbor (kNN) Method 

and other volume V is fixed and k is determined called Kernel Density Estimation(KDE). 

kNN PDF estimation methods are prone to local noise and since its integral over all the 

instance space diverges the probability density is less accurate. Therefore KDE with 

Gaussian kernel was used. The KDE plots for each feature is shown in Figures 16,17,18. 

These plots are a visualization of the features in the given space. Single peak indicates an 

overall presence and more the number of modes more heterogeneity and hence 

multimode features can contribute distinct information to the predictive analysis. 
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Result: Physical Soil Properties: Coarse Fragment  Content 

       Large Scale Environmental: Elevation and yearly mean precipitation 

      Electro Chemical Properties: CO3,Eh,pH 

 

 

 
Figure 16: KDE for physical soil properties 
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Figure 17: KDE for Large scale environmental features 
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Figure 18: KDE for Soil Electrochemical features 

Unsupervised Feature Selection 

Spectral Feature Selection (SPEC): SPEC estimates the feature relevance by estimating 

feature consistency with the spectrum of a matrix derived from a similarity matrix S 

using Radial-Bases Function (RBF) as similarity function. Based on S, a graph structure 

is constructed and uses Spectral Graph Theory to find features with the best separability 

in assumption that points are separated to the predefined number of clusters [2]. SPEC 

algorithm selects k features from the given set having highest scores. Figure 19 shows the 

SPEC scores.  

Result: Physical Soil Properties: Bulk density ,Coarse Fragment 

       Large Scale Environmental: Yearly Mean Precipitation 

      Electro Chemical Properties: Eh,Resistivity,CO3 
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Figure 19: SPEC scores 

 

Laplacian Score: is a special case of SPEC based on the observation that data from the 

same class is often close to each other and thus we can evaluate the importance of a 

feature by its power of locality preserving [3].  A Laplacian score is then calculated for 

each feature and will have the property that smallest values correspond to the most 

important dimensions. Figure 20 shows the Laplacian scores for each feature. 

Result: Physical Soil Properties: Bulk density 

       Large Scale Environmental: Elevation 

      Electro Chemical Properties:SO4, Resistivity 

 
Figure 20: Laplacian scores 

 

Multi-Cluster Feature Selection: Selects the set of features that can cover all the 

possible clustering in the data. In MCFS a spectral analysis is performed to measure the 

correlation between different features. The top eigenvectors of the graph Laplacian are 
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used to cluster the data and a feature score is being computed. The algorithm returns top 

k features from the set of features passed. Scores calculated are shown in Figure 21. 

Result: Physical Soil Properties: Bulk density 

       Large Scale Environmental: Elevation 

      Electro Chemical Properties: Resistivity,pH 

 
Figure 21: MCFS score plots 

Summary: 

On comparing all the above methods bulk density and coarse fragment content can be 

chosen soil physical features, elevation and yearly mean precipitation from large scale 

environmental features and keeping all the electrochemical properties we have a total of 

11 features. Among the ion concentrations the least preferred from the scores is HCO3.  

 

Table 5: Features selected using different methods 

Feature Correlation 

Matrix 

KDE SPEC Laplacian MCFS 

Bulk density   Y Y Y 

Clay Content      

Coarse Fragment  Y Y   

Sand Content      

Silt Content Y     

Elevation  Y  Y Y 

Yearly Mean 

Precipitation  

Y Y Y   

Avg. NDVI Y     

Eh Y Y Y   

Resistivity Y  Y y Y 
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pH Y Y   Y 

CO3 Y Y Y   

HCO3 Y     

Cl Y     

SO4 Y   Y  

Number of clusters 

An essential input parameter for clustering is the number of clusters that best fits a given 

dataset. Number of measures have been well developed for this problem in literature. In 

general, they can be categorized into three types: external criteria, internal criteria and 

relative criteria. An external criterion evaluates the result of clustering based on a pre-

specified structure [5]. Meanwhile an internal criterion is based on quantities that involve 

the vectors of the data set themselves. The basis of external and internal criteria is 

statistical testing and is complex. The relative criterion is more often used. 

Since each clustering use different properties there are different types of measures which 

has been proposed. For model based clustering the “Approximate Weight of Evidence 

Criterion (AWE)” is used to determine the number of clusters. When EM is used to find 

the maximum mixture likelihood an approximation to AWE called Bayesian Information 

Criterion (BIC) is applicable. 

𝐵𝐼𝐶 = 𝐿(𝜃) −
1

2
𝑚 ∗ 𝑙𝑜𝑔(𝑛)        

 (2) 

where, 𝐿(𝜃) loglikehood function, m=no. of free parameters to be estimated , n= 

number of observations 

A model with a higher BIC is a better model, since if data fits well to the model, the log 

likelihood would be higher and m should be a minimum. Based on the degree of freedom 

in the shape of the cluster there can be four covariance types. Spherical corresponds to 

equal volume,  no orientation for the cluster shape. Diagonal which means that the size 
of the cluster along each dimension can be set independently, with the resulting 
ellipse constrained to align with the axes. Tied means the clusters have same shape 
but the shape can be anything. Full means the components can have any shape or 
orientation independently(unconstrained). With the selected 11 features the number 

of clusters were calculated with assuming k mixed multivariate Gaussian distribution. k 

varied from k=2 to k=20 and the result is as shown in figure 22 with different dataset. 

The optimal number of clusters is considered at the number where the minimum of the 

BIC is achieved. In both datasets k=5 components for full (unconstrained) model shows 

the knee point which means 5 clusters will be preferable for the dataset. 
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(a) Result of test set 1 

 
(b) Result of test set 2 

 
(c) Result of test set 3 

Figure 22: BIC score for different test sets.  
 

References: 

1. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,Springer, 

2001. 

Optimal model 

Optimal model 

Optimal model 



Date of Report: 3rd Quarterly Report – Prepared by Homero Castaneda, TEES 

 Hui Wang, U. Dayton 
 Page 24 
   

2. Alelyani, Salem, Jiliang Tang, and Huan Liu. "Feature Selection for Clustering: A 

Review."Data Clustering: Algorithms and Applications 29 (2013): 110-121. 

3. M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding and 

Clustering,” Advances in Neural Information Processing Systems, Vol. 14, 2001. 

4. Cai, Deng, Chiyuan Zhang, and Xiaofei He. "Unsupervised feature selection for multi-cluster 

data". Proceedings of the 16th ACM SIGKDD international conference on Knowledge 

discovery and data mining. ACM, 2010. 

5.  Q. Zhao, V. Hautamaki and P. Fränti, "Knee Point Detection in BIC for Detecting the 

Number of Clusters", ACIVS, 2008. 

 

5: Project Schedule –  
The project is on-schedule as originally-proposed. 

During the following quarter, the team will perform and cover the experimental laboratory 

testing planned. During the analysis of experimental laboratory data we will consider gaps 

in prior knowledge relating coating conditions and corrosion severity under controlled 

environmental factors. We also will define parameters in the field that has not been 

considered for severity. We also are using a methodology that considers a new 

interpretation for CIS and DCVG technologies. 

Fieldwork will involve pipelines whose RoW reflects conditions of different soil scenarios, 

and a host of topographic conditions will be included, to cover the range of typical US 

conditions. Trends in the outcomes will be examined and/or deterministic or semi-

empirical models or expressions will be developed to quantify the damage evolution in the 

pipeline/soil system. 

The activity for mapping available data via GIS tools and geographically co-register all 

datasets will be continue to have the task completed.  

 

In the following quarter, we will perform model selection in order to determine the number 

of clusters regarding the heterogeneity of the soil environment. The Bayesian information 

criteria will be adopted as a quantitative measure of the preference as it systematically takes 

both model complexity and fitting error into consideration and hence possible overfitting 

can be avoided. 

Another work will be finished in the following month should be the detailed clustering 

analysis as scheduled in the original proposed tasks. The optimal number of clusters will 

be used and the spatial distribution of different clusters (i.e., soil corrosion environment) 

will be visualized and discussed. 
 

6. Publication 

On May 20th 2020, a conference abstract was submitted to the NACE 2021 Conference to 

be held in Salt Lake City Utah USA. Currently, the abstract is under review. 
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